Chem. Ber. 117, 1583 – 1590 (1984)

(Disilylamino)phosphane $(R_f)_2P - N(SiMe_3)_2 - Bausteine für PN_3S_2-Ringe$

Herbert W. Roesky*, Joachim Lucas, Mathias Noltemeyer und George M. Sheldrick

Institut für Anorganische Chemie der Universität Göttingen, Tammannstr. 4, D-3400 Göttingen

Eingegangen am 8. Juli 1983

Aus den (Disilylamino)phosphanen $(R_f)_2P - N(SiMe_3)_2 \cdot (R_f = CF_3, C_2F_5)$ und $S_3N_2Cl_2$ werden unter Abspaltung von Me_3SiCl und S_8 neue Cyclophosphadithiatriazene der Zusammensetzung $(R_f)_2PN_3S_2$ (1a, b) erhalten. Als Nebenprodukte treten Phosphanimide $(R_f)_2P(Cl) = NSiMe_3$ (2a, b) auf. 1a, b bilden mit Norbornadien 1:1-Addukte 3a, b. Die Röntgenstrukturanalyse von 3a $(R_f = CF_3)$ wird mitgeteilt. Aus 1a bildet sich nach mehrtägigem Stehenlassen eine kristalline Verbindung $[(CF_3)_2PN_2S]_2$ (4), deren Röntgenstrukturbestimmung einen achtgliedrigen Ring mit 1,3-P(CF_3)_2-Gruppen zeigt.

(Disilylamino)phosphanes (R_f)₂P - N(SiMe₃)₂ - Precursors for PN₃S₂ Rings

The reactions of the (disilylamino)phosphanes $(R_f)_2P - N(SiMe_3)_2$ ($R_f = CF_3$, C_2F_5) with $S_3N_2Cl_2$ lead to new cyclophosphadithiatriazenes of composition $(R_f)_2PN_3S_2$ (1a, b) with elimination of Me₃SiCl and S_8 . By-products are $(R_f)_2P(Cl) = NSiMe_3$ (2a, b). Reaction of 1a, b with norbornadiene yields 1:1 adducts 3a, b. The X-ray structure analysis of 3a ($R_f = CF_3$) is reported. When 1a is allowed to stand for several days a crystalline compound of composition [(CF_3)₂PN₂Sl₂(4) is formed. The X-ray structure analysis shows that 4 contains an eight-membered ring with 1,3-P(CF_3)₂ groups.

(Disilylamino)phosphane vom Typ $R_2P - N(SiMe_3)_2$ sind seit einiger Zeit Gegenstand intensiver Untersuchungen^{1,2)}. Stereochemische Aspekte, wie die Rotationsbarrieren um die P - N-Bindung in Abhängigkeit von den Substituenten, sind von theoretischem Interesse³⁾. Mit dem freien Elektronenpaar am Phosphor und den leicht spaltbaren N - Si-Bindungen stellen sie interessante Substrate zur Übertragung der reaktiven P - N-Einheit dar.

Im Rahmen unserer Untersuchungen über das Reaktionsverhalten fluoralkylsubstituierter (Disilylamino)phosphane mit halogenhaltigen S-N-Heterocyclen fanden wir Verbindungen der Zusammensetzung $(R_f)_2PN_3S_2$ (1).

Die ebenfalls entstandenen Chlorphosphanimide 2 erhält man auf anderem Weg in glatter Reaktion durch Chlorieren der Aminophosphane mit Cl₂ oder SO₂Cl₂. Sie konnten so eindeutig charakterisiert werden.

1a, b sind intensiv rotviolette Flüssigkeiten geringer thermischer Stabilität. Die intensive Farbe sowie die chemischen Verschiebungen im 31 P-NMR-Spektrum von -40.6 ppm für 1a und -36.8 ppm für 1b lassen einen fünfgliedrigen S_3N_2 -Ring mit

© Verlag Chemie GmbH, D-6940 Weinheim, 1984 0009 - 2940/84/0404 - 1583 \$ 02.50/0

$$\begin{bmatrix} S-N \\ N-S \end{bmatrix}^{+} Cl^{-} + (R_{f})_{2}P-N(SiMe_{3})_{2} \xrightarrow{-Me_{3}SiCl} (R_{f})_{2}P \xrightarrow{N-S} N + (R_{f})_{2}P=NSiMe_{3}$$

$$= S_{3}N_{2}Cl_{2}$$

$$= R_{f}$$

$$= CF_{3}$$

exocyclischer S=N-Doppelbindung, wie er typisch für Reaktionen von $S_3N_2Cl_2$ und Aminen mit elektronenziehenden Gruppen ist, unwahrscheinlich erscheinen $^{4-6)}$. Dies macht auch der Vergleich der 31 P-NMR-Verschiebung von 1 mit den eingesetzten acyclischen Ausgangsverbindungen deutlich $[(CF_3)_2PN(SiMe_3)_2 \delta = +47.1, (C_2F_5)_2PN(SiMe_3)_2 \delta = +48.2]$. Zur vollständigen Charakterisierung und strukturellen Untersuchung wurden 1a, b mit überschüssigem Norbornadien zu den 1:1-Addukten 3a, b umgesetzt.

Im ¹⁹F-NMR-Spektrum von 3a, b findet man bei Raumtemperatur die Signale für zwei nicht äquivalente R_{Γ} -Gruppen. Von 3a wurde eine Röntgenstrukturanalyse angefertigt (Abb. 1).

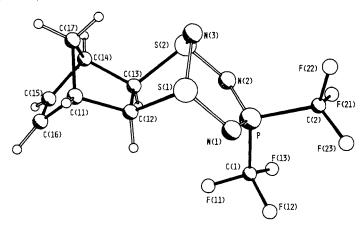


Abb. 1. Molekülstruktur von (CF₃)₂PN₃S₂ · C₇H₈ (3 a)

Röntgenstrukturanalyse⁷): 3a kristallisiert in farblosen Platten der Raumgruppe $P2_1/c$ mit den Zellkonstanten $a=1139.2(2),\ b=1082.7(1),\ c=1211.2(3)$ pm; $\beta=115.60(1)^\circ,\ V=1.347$ nm³, Z=4; $D_{ber}=1.810$ Mg·m⁻³; $\mu=5.6$ cm⁻¹.

Von einem Kristall der Größe $0.4 \times 0.3 \times 0.2$ mm wurden auf einem Stoe-Siemens-Vierkreis-diffraktometer mit Mo- K_{α} -Strahlung im Profil-Fitting-Verfahren⁸) 2826 Reflexe von $2\Theta = 7-45^{\circ}$ gesammelt. Davon waren 1764 symmetrieunabhängig, und bei 1145 Reflexen war $F_{\alpha} > 3\sigma(F_{\alpha})$. Die Struktur wurde mit Direkten Methoden gelöst und anisotrop verfeinert zu R = 0.0815 ($R_{\rm w} = 0.065$ mit $w^{-1} = \sigma^2(F_{\alpha}) + 0.0002$ F_{α}^2).

Tab. 1. Atomkoordinaten (\times 10⁴) sowie anisotrope thermische Parameter (pm² \times 10⁻¹) von 3a. Der Temperaturfaktorexponent hat die Form $2\pi^2(h^2a^{*2}U_{11}+\ldots+2hka^*b^*U_{12})$

	×	¥	<u>z</u>	<u>U</u> 11	<u>U</u> 22	<u>u</u> 33	<u>U</u> 23	<u>U</u> 13	<u>U</u> 12
S(1)	5593(2)	5038(2)	3734(3)	40(1)	35(1)	49(2)	-5(2)	18(1)	-3(1
5(2)	5548(2)	2575(2)	3787(3)	39(1)	36(2)	47(2)	6(2)	17(1)	i(i
N(1)	4153(6)	5091(7)	2549(7)	38(4)	25(4)	51(5)	-2(5)	11(4)	–4 (4
N(2)	4092(6)	2527(7)	2610(7)	36(4)	30(5)	56(5)	-4(5)	13(4)	-3(4
N(3)	5688(6)	3831(8)	4588(6)	50(4)	55(5)	32(4)	-12(5)	20(3)	2(5
P	3433(2)	3821(3)	2091(2)	35(1)	34(1)	44(1)	-7(2)	15(1)	-2(1
F(11)	3742(7)	3597(8)	77(6)	130(6)	197(9)	78(5)	-3(7)	71(5)	23(7
F(12)	2219(8)	4812(7)	-132(6)	159(7)	89(6)	47(4)	19(5)	19(5)	15(5
P(13)	1943(7)	2891(8)	-104(6)	126(6)	122(7)	61(5)	-34(5)	10(4)	-45(5
P(21)	1221(5)	2821(7)	1952(7)	66(4)	84(5)	132(6)	-39(5)	51(4)	→31(4
F(22)	2110(5)	4115(7)	3384(6)	73(4)	122(6)	89(5)	-30(5)	53(3)	-19(4
V(23)	1077(6)	4739(7)	1571(7)	58(4)	99(6)	168(7)	58(6)	56(5)	33(4
α(1)	2812(11)	3766(12)	404(9)	70(7)	84(9)	39(6)	13(8)	16(6)	-1(8
C(2)	1854(8)	3859(9)	2241(9)	52(5)	26(5)	73(7)	-19(7)	15(5)	-5(6
C(17)	8514(8)	3725(9)	4786(8)	41(5)	60(7)	46(6)	9(7)	8(4)	7(6
C(11)	8097(8)	4747(9)	3807(9)	48(6)	56(7)	64(7)	-4(7)	25(6)	-13(5
C(12)	6630(7)	4441(8)	3048(8)	28(5)	59(6)	40(6)	5(6)	18(4)	12(5
C(13)	6589(8)	3019(8)	3046(9)	50(6)	40(6)	45(6)	-15(6)	27(5)	5(5
C(14)	8064(8)	2691(9)	3829(10)	37(6)	38(6)	81(8)	13(7)	20(6)	7(5
C(15)	8703(10)	3089(13)	3035(11)	57(7)	115(12)	69(9)	-15(10)	41(7)	1(8
C(16)	8753(9)	4320(11)	3044(12)	41(7)	70(8)	85(10)	13(9)	38(7)	6(6

Tab. 2. Bindungslängen (pm) und -winkel (Grad) von 3a

1 ac. 2. Directigolarigen (pin) and -winker (Grad) von 3 a							
S(1)-N(1) 164.	9(6)	S(1)-N(3)	164.1(9)				
S(1)-C(12) 183.0	0(11)	S(2)-N(2)	165.6(6)				
S(2)-N(3) 163.	3(9)	S(2)-C(13)	183.4(13)				
N(1)-P 157.4	4(7)	N(2)-P	158.5(7)				
P-C(1) 185.	3(11)	P-C(2)	188.4(11)				
F(11)-C(1) 129.	5(16)	F(12)-C(1)	133.5(14)				
F(13)-C(1) 131.	5(14)	F(21)-C(2)	129.9(11)				
F(22)-C(2) 131.	5(13)	F(23)-C(2)	131.5(11)				
C(17)-C(11) 153.9	9(14)	C(17)-C(14)	153.2(14)				
C(11)-C(12) 155.0	5(11)	C(11)-C(16)	149.1(19)				
C(12)-C(13) 154.0	0(13)	C(13)-C(14)	157.2(11)				
C(14)-C(15) 149.9	9(20)	C(15)-C(16)	133.4(18)				
N(3)-S(1)-C(12)	97.2(4)	N(1)-S(1)-N(3)	110.2(4)				
N(2)-S(2)-N(3)	109.9(4)	N(1)-S(1)-C(12)	102.2(4)				
N(2)-S(2)-C(13)	101.9(4)	N(3)-S(2)-C(13)	98.9(4)				
S(1)-N(1)-P	116.6(4)	S(2)-N(2)-P	116.1(4)				
S(1)-N(3)-S(2)	108.9(4)	N(1)-P-N(2)	123.1(3)				
N(1)-P-C(1)	108.0(5)	N(2)-P-C(1)	107.4(5)				
N(1)-P-C(2)	108.7(5)	N(2)-P-C(2)	106.8(4)				
C(1)-P-C(2)	100.5(5)	P-C(1)-F(11)	111.7(6)				
P-C(1)-F(12)	112.4(8)	F(11)-C(1)-F(12)	106.3(11)				
P-C(1)-F(13)	112.9(9)	F(11)-C(1)-F(13)	107.8(10)				
F(12)-C(1)-F(13)	105.3(8)	P-C(2)-F(21)	113.4(8)				
P-C(2)-F(22)	108.6(5)	F(21)-C(2)-F(22)	108.1(10)				
P-C(2)-F(23)	111.9(8)	F(21)-C(2)-F(23)	108.3(7)				
F(22)-C(2)-F(23)	106.3(9)	C(11)-C(17)-C(14)	93.0(7)				
C(17)-C(11)-C(12)	101.4(8)	C(17)-C(11)-C(16)	100.6(8)				
C(12)-C(11)-C(16)	105.4(8)	S(1)-C(12)-C(11)	113.3(7)				
S(1)-C(12)-C(13)	109.2(7)	C(11)-C(12)-C(13)	103.7(7)				
S(2)-C(13)-C(12)	106.6(8)	S(2)-C(13)-C(14)	113.2(7)				
C(12)-C(13)-C(14)	101.6(7)	C(17)-C(14)-C(13)	102.3(8)				
C(17)-C(14)-C(15)	100.3(9)	C(13)-C(14)-C(15)	103.7(8)				
C(14)-C(15)-C(16)	108.2(12)	C(11)-C(16)-C(15)	106.5(12)				
C(14)-C(15)-C(16)	108.2(12)	C(11)-C(16)-C(15)	106.5(12)				

Chem. Ber. 117 (1984)

Sämtliche Programme wurden von G. M. S. geschrieben. Atomparameter, Bindungsabstände und Winkel sind in Tab. 1 und 2 aufgeführt.

Abb. 1 zeigt, daß der PN_3S_2 -Ring über die beiden Schwefelatome in einer 1,3-Cycloaddition mit dem Norbornadien zu dem dargestellten *exo*-Produkt reagiert. Kürzlich erhielten *Appel* et al. 9,10) sowie *Chivers* et al. 11) auf anderem Wege Cyclophosphadithiatriazene mit $R = Me_3SiNH$, Me, Ph, OPh. Innerhalb des PN_3S_2 -Gerüstes fällt die geringe Differenz in den SN-Abständen auf. Sie betragen für N(2) - S(2) 165.6, N(3) - S(2) 163.8, N(3) - S(1) 164.1 und N(1) - S(1) 164.9 pm, im Mittel also 164.6 pm. Von der durch P, S(1), S(2) aufgespannten Ebene weichen N(1) um -5.8 und N(2) um -4.4 pm ab. N(3) befindet sich 84.4 pm von dieser Ebene entfernt. Der Abstand S(1) \cdots S(2), der mit 266.8 pm um 6.8 pm länger ist als der S - S-Abstand in S_4N_4 , liegt noch im Bereich direkter $S \cdots S$ -Wechselwirkung. Der S - C-Abstand ist mit 183.2 pm etwas geringer als in $S_4N_4 \cdot 2$ C_7H_8 (185.1 pm) S_1

$$(CF_3)_{P} \xrightarrow{N-S}_{N-S} N \longrightarrow \underset{F_3C-P}{\overset{S-N-S}{\underset{N-F-CF_3}{\bigvee}}} N$$

Läßt man 1a mehrere Tage ohne Lösungsmittel bei Raumtemperatur stehen, so bilden sich orangefarbene Kristalle. Die Elementaranalyse ergibt die Zusammensetzung $(CF_3)_2PN_2S$ (4). Das Massenspektrum, das einen Molekülpeak mit einer relativen Häufigkeit von 100% bei m/e = 458 ergibt, sowie eine in CCl_4 osmometrisch bestimmte Molmasse von 562 zeigen jedoch, daß 4 dimer sein sollte. Ein Signal im ³¹P-NMR-Spektrum und zwei Dubletts für nichtäquivalente CF_3 -Gruppen im ¹³C-NMR-Spektrum deuten auf einen nicht planaren achtgliedrigen Ring hin. Um dieses zu bestätigen und auch um festzustellen, ob die Phosphoratome die 1,3- oder 1,5-Position besetzen, wurde eine Röntgenstrukturanalyse von 4 durchgeführt (Abb. 2).

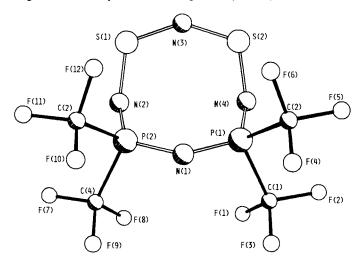


Abb. 2. Molekülstruktur von [(CF₃)₂P]₂S₂N₄ (4)

*Röntgenstrukturanalyse*⁷⁾: 4 kristallisiert in der Raumgruppe $P\bar{1}$ mit den Zellkonstanten a=732.8(9), b=907.8(9), c=1260.2(25) pm; $\alpha=69.72(10)$, $\beta=89.13(10)$, $\gamma=109.66(9)^{\circ}$, V=0.7322 nm³, Z=2; $D_{ber}=2.078$ Mg·m⁻³; $\mu=7.0$ cm⁻¹.

Von einem Kristall mit den Dimensionen $0.4 \times 0.2 \times 0.1$ mm wurden unter gleichen Bedingungen wie bei 3a 3828 Daten vermessen. Aus 1912 symmetrieunabhängigen Reflexen wurden 1451 mit $F_0 > 5\,\sigma$ für alle Rechnungen verwendet. Die Struktur wurde mit Direkten Methoden gelöst und anisotrop verfeinert zu R=0.0911 ($R_w=0.0959$, mit $w^{-1}=\sigma^2(F)+0.01\,F^2$). Die relativ hohen R-Werte beider Strukturen sind auf die große Thermalbewegung der CF₃-Gruppen zurückzuführen. Atomparameter, Bindungsabstände und Winkel sind in Tab. 3 und 4 aufgeführt.

	×	¥	<u>z</u>	<u>U</u> 11	<u>U</u> 22	\bar{n}^{33}	$\underline{\mathbf{u}}_{23}$	<u>U</u> 13	<u>U</u> 12
P(1)	3689(3)	3248(2)	2886(2)	64(1)	29(1)	46(1)	-17(1)	-18(1)	18(1)
P(2)	3613(3)	755(2)	1991(1)	59(1)	36(1)	41(1)	-19(1)	-10(1)	20(1)
S(1)	2063(3)	2356(3)	9(2)	83(1)	72(1)	46(1)	-25(1)	~26(1)	32(1
S(2)	2141(3)	4955(2)	935(2)	80(1)	43(1)	68(1)	-15(1)	-30(1)	31(1)
N(1)	3473(10)	1460(7)	2949(4)	86(4)	40(3)	36(3)	-15(3)	-7(3)	29(3)
N(2)	3707(9)	1792(8)	684(5)	72(4)	63(4)	41(3)	-17(3)	-3(3)	30(3)
H(3)	1602(9)	3791(8)	225(5)	56(4)	56(4)	54(4)	-11(3)	-16(3)	24(3
H(4)	3789(10)	4730(7)	1732(5)	83(4)	28(3)	60(4)	-11(3)	-22(3)	18(3)
C(1)	5997(14)	4134(10)	3403(8)	75(6)	56(5)	67(5)	-26(4)	-22(5)	11(4
C(2)	1715(12)	2850(10)	4031(7)	66(5)	53(4)	76(6)	-33(4)	-8(4)	21(4
α(3)	1574(13)	-1352(10)	2487(7)	86(6)	52(5)	71(5)	-37(4)	-13(4)	28(4
C(4)	5826(14)	208(12)	2046(7)	76(6)	84(6)	69(5)	-47(5)	-22(4)	43(5
P(1)	7513(9)	4471(8)	2680(5)	70(4)	118(5)	104(5)	-32(4)	-28(3)	16(3
F(2)	6129(12)	5597(8)	3529(8)	155(6)	92(4)	196(7)	-102(5)	-99(6)	41(4)
₽(3).	6156(9)	3118(8)	4387(5)	108(4)	113(5)	68(3)	-9(3)	-49(3)	19(4)
F(4)	1819(10)	1814(8)	5025(4)	143(5)	95(4)	60(3)	-15(3)	7(3)	59(4
P(5)	1809(13)	4282(7)	4126(7)	195(8)	69(4)	152(6)	-63(4)	27(5)	50(4)
F(6)	32(9)	2214(9)	3768(6)	71(4)	124(5)	131(5)	-55(4)	-6(3)	25(3
¥(7)	6006(14)	-509(14)	1333(7)	181(8)	268(11)	176(7)	-159(8)	-83(6)	177(8)
P(8)	7409(9)	1572(11)	1781(7)	65(4)	129(6)	171(7)	-25(5)	-5(4)	34(4)
F(9)	5957(11)	-729(11)	3051(6)	139(6)	157(6)	93(4)	-15(4)	-23(4)	107(5
F(10)	1541(10)	-2292(6)	3546(5)	126(5)	45(3)	90(4)	-4(3)	-9(3)	14(3)
P(11)	1644(11)	-2190(7)	1827(6)	156(6)	74(4)	142(6)	-85(4)	-15(4)	17(4)
F(12)	~98(8)	-1122(7)	2429(6)	68(4)	80(4)	155(6)	-25(4)	-12(3)	15(3)

Tab. 3. Atomkoordinaten (\times 10⁴) sowie anisotrope thermische Parameter (pm² \times 10⁻¹) von 4. Der Temperaturfaktorexponent hat die Form $2\pi^2(h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12})$

Die Struktur (Abb. 2) besteht aus einem achtgliedrigen Ring mit $1,3-P(CF_3)_2$ -Ringgliedern. Bei der entsprechenden $P(CH_3)_2$ -Verbindung wurde nur das 1,5-Isomere isoliert ¹⁴⁾. Der Ring besitzt eine ungewöhnliche Dachstruktur; die N(2)-S(1)-N(3)-S(2)-N(4)- und N(4)-P(1)-N(1)-P(2)-N(2)-Hälften sind jeweils koplanar angeordnet (mittlere Abweichungen 0.6 bzw. 3.0 pm) mit einem Winkel zwischen den Normalen von 48.5° .

Senkrecht zu diesen zwei Ebenen liegt eine molekulare Symmetrieebene. Die vor kurzem von *Chivers* et al. 15) beschriebene Struktur von 1,3-(Ph_2P)₂ N_4S_2 zeigt eine ganz andere Konformation, mit einem P-Atom oberhalb und dem anderen unterhalb der Ebene durch die restlichen Ringatome. In 4 sind die P – N-Bindungen erheblich kürzer und die P – C-Bindungen erheblich länger als in 1,3-(Ph_2P)₂ N_4S_2 .

Die S – N-Bindungslängen in der – S – N – S-Einheit in 4 sind 4.2 pm kleiner als die anderen zwei S – N-Bindungslängen; in 1,3- $(Ph_2P)_2N_4S_2$ dagegen sind die entsprechenden Abstände 2.7 pm größer. In 4 führen die stärkeren P – N- π -Bindungen zu einer partiellen Spaltung des π -Systems, mit lokalisierter – S = N = S-Einheit, während in 1,3- $(Ph_2P)_2N_4S_2$ die π -Elektronen im Ring relativ delokalisiert sind.

Tab. 4. Bindungslängen (pm) und -winkel (Grad) von 4								
P(1)-N(1)	155.0(7)	P(1)-N(4)	158.3(6)					
P(1)-C(1)	184.7(10)	P(1)-C(2)	187.8(10)					
P(2)-N(1)	156.8(7)	P(2)-N(2)	157.5(6)					
P(2)-C(3)	187.1(7)	P(2)-C(4)	184.4(12)					
S(1)-N(2)	160.7(8)	S(1)-N(3)	155.7(9)					
S(2)-N(3)	156.8(8)	S(2)-N(4)	160.3(8)					
C(1)-F(1)	130.6(12)	C(1)~F(2)	136.3(14)					
C(1)-F(3)	129.9(10)	C(2)-F(4)	130.2(10)					
C(2)-F(5)	132.6(13)	C(2)-F(6)	127.7(11)					
C(3)-F(10)	130.6(10)	C(3)-F(11)	131.8(14)					
C(3)-F(12)	130.9(12)	C(4)-F(7)	130.7(18)					
C(4)-F(8)	131.4(11)	C(4)-F(9)	128.4(11)					
N(1)-P(1)-N(4)	123.1(4)	N(1)-P(1)-C(1)	108.3(4)					
N(4)-P(1)-C(1)	103.2(3)	N(1)-P(1)-C(2)	104.0(4)					
N(4)-P(1)-C(2)	112.5(4)	C(1)-P(1)-C(2)	104.3(4)					
N(1)-P(2)-N(2)	122.9(4)	N(1)-P(2)-C(3)	104.8(4)					
N(2)-P(2)-C(3)	111.5(4)	N(1)-P(2)-C(4)	108.8(4)					
N(2)-P(2)-C(4)	104.1(4)	C(3)-P(2)-C(4)	103.0(4)					
N(2)-S(1)-N(3)	115.9(4)	N(3)-S(2)-N(4)	115.5(4)					
P(1)-N(1)-P(2)	131.6(3)	P(2)-N(2)-S(1)	130.1(4)					
S(1)-N(3)-S(2)	142.4(5)	P(1)-N(4)-S(2)	130.4(4)					
P(1)-C(1)-F(1)	110.8(7)	P(1)-C(1)-F(2)	111.0(8)					
F(1)-C(1)-F(2)	107.6(7)	P(1)-C(1)-F(3)	112.7(5)					
F(1)-C(1)-F(3) P(1)-C(2)-F(4)	107.4(9)	F(2)-C(1)-F(3)	107.0(9)					
F(1)-C(2)-F(4) F(4)-C(2)-F(5)	112.5(7)	P(1)-C(2)-F(5)	110.7(5)					
F(4)-C(2)-F(5)	108.6(9)	P(1)-C(2)-F(6)	109.9(8)					
P(2)-C(3)-F(10)	107.8(6) 113.1(6)	F(5)-C(2)-F(6)	107.1(9)					
F(2)-C(3)-F(10) F(10)-C(3)-F(10)		P(2)+C(3)-F(11)	111.7(6)					
F(10)-C(3)-F(1)	• • • •	P(2)-C(3)-F(12) F(11)-C(3)-F(12)	108.7(6)					
P(2)-C(4)-F(7)	113.7(8)		107.0(8)					
F(7)-C(4)-F(8)	106.3(9)	P(2)-C(4)+F(8) P(2)-C(4)-F(9)	110.3(8)					
F(7)-C(4)-F(9)	108.5(10)	F(8)-C(4)-F(9)	113.3(7) 104.0(8)					
=(1) ((1)		1(0)-0(4)-1(3)	704.0(8)					

Der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und der Göttinger Akademie der Wissenschaften danken wir für die Förderung dieser Arbeit.

Experimenteller Teil

Alle Versuche wurden unter Feuchtigkeitsausschluß durchgeführt. $^{-1}$ H-, 19 F-NMR-Spektren: Bruker 60-E (60 MHz), TMS und C_6F_6 als interner Standard. $^{-13}$ C-NMR-Spektren: Bruker WP 80 SY (10.15 MHz), TMS als interner Standard. $^{-31}$ P-NMR-Spektren: Bruker WP 80 SY (32.442 MHz), 85 proz. H_3 PO₄ als externer Standard. $^{-}$ IR-Spektren: Perkin Elmer Spektrograph 735 B. $^{-}$ Massenspektren: Varian MAT CH 5 (70 eV). $^{-}$ Elementaranalysen und Molmassenbestimmung: Mikroanalytisches Laboratorium Beller, Göttingen.

1, I-Bis(trifluormethyl)cyclo- $1\lambda^5$ -phospha-3, 5-dithia-2, 4, 6-triazen (1a): 2.5 g (12.8 mmol) $S_3N_2Cl_2^{16)}$ werden in 50 ml CH_2Cl_2 suspendiert und 4.2 g (12.8 mmol) $(CF_3)_2PN(SiMe_3)_2^{3)}$ in 50 ml CH_2Cl_2 bei Raumtemp. zugetropft. In einer exothermen Reaktion färbt sich die Reaktionslösung rasch tief rotviolett. Nach 24 h wird von ausgefallenem Schwefel abfiltriert. Alles Flüchtige wird bei 10^{-2} Torr in eine Falle gezogen. Den größten Teil des CH_2Cl_2 und Me_3SiCl trennt man anschließend bei Raumtemp. und 10 Torr ab. Durch Kondensation bei $-40^{\circ}C/1$ Torr kann 1a nach ^{19}F -NMR in 80 proz. Reinheit erhalten werden; intensiv rotviolette Flüssigkeit, Ausb.

0.67 g (18%). - ¹⁹F-NMR (CH₂Cl₂): $\delta = 92.7$ (d), $J(PCF_3) = 116$ Hz. - ³¹P-NMR (CH₂Cl₂): $\delta = -40.6$.

1, l-Bis(pentafluorethyl)cyclo- $1\lambda^5$ -phospha-3,5-dithia-2,4,6-triazen (1b): Die Versuchsdurchführung erfolgt wie bei 1a. Ausb. 0.96 g (16%) intensiv rotviolette Flüssigkeit. – 19 F-NMR (CH₂Cl₂): δ = 44.0 (d, CF₂), J(PCF₂) = 80 Hz; 85.0 (d, CF₃), J(PCF₂CF₃) = 20 Hz. – 31 P-NMR (CH₂Cl₂): δ = -36.8.

Chlorbis(trifluormethyl)phosphan-trimethylsilylimid (2a): Zur Lösung von 2.0 g (6.1 mmol) (CF₃)₂PN(SiMe₃)₂ in 10 ml CH₂Cl₂ werden bei 0 °C langsam 0.82 g (6.1 mmol) SO₂Cl₂ in 10 ml CH₂Cl₂ getropft. Man rührt 1 h bei Raumtemp. und zieht anschließend CH₂Cl₂ und Me₃SiCl bei 10 Torr ab. Durch zweimalige Kondensation bei -50 °C und 10^{-2} Torr erhält man reines, extrem hydrolyseempfindliches 2a. Ausb. 1.51 g (85%). - IR: 2975 m, 2910 s, 1433 sst, 1260 st, 1200 st, 1180 st, 1142 m, 1065 s, 915 s, 860 st, 845 st, 760 m, 690 m, 605 cm $^{-1}$ m. - MS: m/e = 291 (M $^+$, 1%), 276 (M $^-$ CH₃, 65), 256 (M $^-$ Cl, 10), 222 (M $^-$ CF₃, 4), 218 (M $^-$ Me₃Si, 2), 180 (C₂F₄PNCl, 100), 164 (C₂F₅PN, 15), 156 (F₂PNSiMe₃, 30), 135 (CF₃PCl, 55), 130 (CF₂PNCl, 90), 122 (PNSiMe₂F, 20), 114 (CF₃PN, 50), 77 (Me₂SiF, 70). $^{-19}$ F-NMR (CH₂Cl₂): $\delta = 90.8$ (d), J(PCF₃) = 128 Hz. $^{-31}$ P-NMR (CH₂Cl₂): $\delta = -37.9$.

C₅H₉ClF₆NPSi (291.6) Ber. C 20.58 H 3.09 Gef. C 21.5 H 3.5

Chlorbis(pentafluorethyl)phosphan-trimethylsilylimid (2b): Die Versuchsdurchführung erfolgte wie bei 2a. Ausb. 2.10 g (88%). – IR: 2955 m, 2805 s, 1430 st, 1305 st, 1260 st, 1225 sst, 1160 st, 1145 st, 990 st, 860 st, 848 st, 758 m, 685 cm⁻¹ s. – MS: m/e = 391 (M⁺, <1%), 376 (M – CH₃, 100), 356 (M – Cl, 5), 280 (C₄F₈PClN, 6), 276 (C₂F₅PClNSiMe₂F, 18), 272 (M – C₂F₅, 6), 180 (C₂F₄PClN, 23), 176 (F₂PClNSiMe₂, 25), 164 (C₂F₅PN, 27). – ¹⁹F-NMR (CH₂Cl₂): $\delta = 43.8$ (d, CF₂), 44.7 (d, CF₂), J(PCF₂) = 94 Hz; 85.3 (d, CF₃), J(PCF₂CF₃) = 10 Hz. – ³¹P-NMR (CH₂Cl₂): $\delta = -37.3$.

C₂H₉ClF₁₀NPSi (391.7) Ber. C 21.45 H 2.30 Gef. C 22.9 H 2.6

Addukt von 1a an Norbornadien (3a): Die Lösung von 0.60 g (2.2 mmol) 1a in 5 ml Diethylether wird bei 0°C unter Rühren mit 1.0 g (11.0 mmol) Norbornadien versetzt. Die Färbung verschwindet, und ein farbloser kristalliner Feststoff fällt aus. Dieser wird abgesaugt und aus Acetonitril/CH₂Cl₂/Norbornadien (1:1:1) umkristallisiert. Ausb. 0.74 g (92%), Schmp. 167 – 168 °C (Zers.). – IR (Nujol): 3095 s, 1195 st, 1155 st, 1135 m, 1062 st, 1045 st, 808 m, 760 m, 742 cm⁻¹ st. – MS: $m/e = 367 \, (M^+, 3\%)$, 298 (M – CF₃, 1), 275 (M – C₇H₈, 90), 256 (C₂F₅PN₃S₂, 2), 225 (CF₄PN₃S₂, 37), 206 (CF₃PN₃S₂, 15), 137 (PN₃S₂, 17), 91 (C₇H₈, 100), 69 (CF₃, 40), 46 (NS, 45). – ¹H-NMR (CDCl₃): δ = 4.71 (Norbornadien-1,4-H), 6.45 (2,3-H), 3.3 (5,6-H), 1.67, 1.33 (7-H) (AB, $J = 11 \, \text{Hz}$). – ¹⁹F-NMR (CH₂Cl₂): δ = 85.1 (d), J(PCF₃) = 108 Hz; 89.3 (d), J(PCF₃) = 117 Hz. – ³¹P-NMR (CH₂Cl₂): δ = -27.1.

C₉H₈F₆N₃PS₂ (367.3) Ber. C 29.43 H 2.20 F 31.04 Gef. C 29.1 H 2.4 F 30.3

Addukt von 1b an Norbornadien (3b): Die Versuchsdurchführung erfolgt wie bei 3a. Ausb. 0.95 g (93%), Schmp. 130-132 °C (Zers.). – IR (Nujol): 3085 s, 1305 m, 1228 st, 1145 st, 1058 st, 995 s, 968 m, 870 s, 808 s, 740 cm⁻¹ m. – MS: m/e = 467 (M⁺, <1%), 375 (M – C_7H_8 , 100), 356 ($C_4F_9PN_3S_2$, 2), 256 ($C_2F_5PN_3S_2$, 15), 137 (PN₃S₂, 43), 91 (C_7H_7 , 100). – ¹H-NMR (CDCl₃): $\delta = 4.75$ (Norbornadien-1,4-H), 6.52 (2,3-H), 3.38 (5,6-H), 1.68, 1.37 (7-H) (AB, J = 10 Hz). – ¹⁹F-NMR (CH₂Cl₂): $\delta = 15.2$ (d, CF₂), $J(PCF_2) = 80$ Hz; 19.2 (d, CF₂), $J(PCF_2) = 80$ Hz; 63.7 (CF₃), $J(PCF_2CF_3) = 40$ Hz. – ³¹P-NMR (CH₂Cl₂): $\delta = -19.2$.

 $C_{11}H_8F_{10}N_3PS_2$ (467.3) Ber. C 28.27 H 1.73 Gef. C 27.8 H 1.6

1,1,3,3-Tetrakis(trifluormethyl)cyclo- $1\lambda^5,3\lambda^5$ -diphospha-5,7-dithia-2,4,6,8-tetrazen (4): Man läßt 0.50 g 1a 5 d unter N_2 stehen. Die entstandenen gelborangefarbenen Kristalle werden isoliert

Chem. Ber. 117 (1984)

und bei Raumtemp./ 10^{-2} Torr sublimiert. Ausb. 0.15 g (18%), Schmp. 57 – 58 °C. – IR (Nujol): 1308 m, 1260 s, 1200 st, 1142 m, 1072 m, 1005 m, 862 s, 805 s, 765 s, 698 cm⁻¹ s. – MS: m/e = 458 (M⁺, 100%), 412 (M – NS, 1), 389 (M – CF₃, 17), 229 ((CF₃)₂PN₂S, 4), 114 (CF₃PN, 68), 69 (CF₃, 77), 46 (NS, 73). – ¹⁹F-NMR (CH₂Cl₂): $\delta = 92.0$, $J(PCF_3) = 123$ Hz. – ¹³C-NMR (CDCl₃): $\delta = 111.1$ (d), $J(PCF_3) = 227$ Hz; 127.8 (d), $J(PCF_3) = 225$ Hz. – ³¹P-NMR (CH₂Cl₂): $\delta = -8.0$.

 $C_4F_{12}N_4P_2S_2$ (458.1) Ber. F 49.76 S 14.00

Gef. F 49.6 S 13.9 Molmasse 562 (osmometr. in CCl₄)

[231/83]

¹⁾ J. C. Wilburn und R. H. Neilson, Inorg. Chem. 18, 347 (1979).

²⁾ D. W. Morton und R. H. Neilson, Organometallics 1, 623 (1982).

³⁾ R. H. Neilson, R. C. Lee und A. H. Cowley, Inorg. Chem. 16, 1455 (1977). ⁴⁾ H. W. Roesky und E. Janßen, Chem. Ber. 108, 2531 (1975).

⁵⁾ H. W. Roesky, G. Holtschneider, H. Wiezer und B. Krebs, Chem. Ber. 109, 1358 (1976).

⁶⁾ H. W. Roesky, W. Schaper, O. Petersen und T. Müller, Chem. Ber. 110, 2695 (1977).

Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 50579, des Autors und des Zeitschriftenzitats angefordert werden.

⁸⁾ W. Clegg, Acta Crystallogr., Sect. A 37, 22 (1981).

⁹⁾ R. Appel und M. Halstenberg, Angew. Chem. 88, 763 (1976); Angew. Chem., Int. Ed. Engl. 15, 695 (1976).

¹⁰⁾ J. Weiss, Acta Crystallogr., Sect. B 33, 2272 (1977).

¹¹⁾ N. Burford, T. Chivers, A. W. Cordes, W. G. Laidlaw, M. C. Noble, R. T. Oakley und P. N. Swepston, J. Am. Chem. Soc. 104, 1282 (1982).

¹²⁾ G. V. Ertl und J. Weiss, Z. Anorg. Allg. Chem. 420, 155 (1976).

¹³⁾ A. M. Griffin und G. M. Sheldrick, Acta Crystallogr., Sect. B 31, 895 (1975).

¹⁴⁾ N. Burford, T. Chivers, P. W. Codding und T. T. Oakley, Inorg. Chem. 21, 982 (1982).

¹⁵⁾ N. Burford, T. Chivers und J. F. Richardson, Inorg. Chem. 22, 1482 (1983).

¹⁶⁾ W. L. Jolly und K. D. Maguire, Inorg. Synth. IX, 102 (1967).